89 research outputs found

    Estimation of Field Alfalfa Evapotranspiration in a Windy, Arid Environment

    Get PDF
    Evapotranspiration (ET) of center pivot irrigated alfalfa was studied in the windy, arid, Curlew Valley, Northern Box Elder County, Utah, during the summers of 2009 and 2010. ET was estimated using eddy covariance (EC) and surface renewal (SR) techniques. ET estimates from the EC and SR analyses were compared with estimates using ASCE Standardized Reference ET Equation, with both dual and mean crop coefficients. EC energy balance closure was 0.80, on average, in 2009 and 0.76 in 2010. The SR weighting parameter (α) was calculated through linear regression of EC and SR sensible heat flux estimates. Alpha was found to be 0.70 if EC energy balance closure was forced and 0.55 if closure was not forced. ET from SR analysis with α = 0.70 (ETSRα=0.70) was 409 mm in 2009 and 331 mm in 2010. ET from EC analysis with forced closure (ETECforced) was 390 mm in 2009 and 326 mm in 2010. In contrast, ETSRα=0.55 was 408 and 333 mm in 2009 and 2010, respectively, while ETECunforced was 315 and 251 mm in 2009 and 2010, respectively. Combined ETECforced and ETSRforced were compared with estimated crop ET from the ASCE Std. Eq. with both dual and mean crop coefficients (ETcDual and ETcm, respectively). ETcDual was 689 mm in 2009, as compared to ETcm and ETEC-SRforced, which were 677 and 617 mm, respectively. In 2010 ETcDual was 674 mm, with ETcm and ETEC-SRforced being 629 and 576 mm, respectively. The Kcm approach more closely approximated the estimated wet soil evaporation determined from the ETEC-SRforced for the measurement conditions and stated assumptions. ETEC-SR estimates were compared with irrigation application information to approximate field scale water balances. Effective precipitation plus net irrigation application (less wind drift and evaporation) were nearly equal to ETEC-SRforced for 2nd and 3rd crops of alfalfa in 2009 and 2010. No deep percolation was calculated using ETEC-SRforced; however, soil moisture measurements were not sufficient to verify that this was true. The water balances suggested that the fields were being underirrigated which may have caused salt accumulation in the soil, as evidenced by the low reported yields

    Accurate Irrigation Water Flow Measurement in Pipes

    Get PDF
    Flow measurement is an important component of water management. There are many methods that can be used to measure water flow, and different methods and technologies are used for pipe flow as compared to open channel (canal) flow. In this fact sheet, we cover only pipe flow, and for that, only technologies that are most common in conventional irrigation practice. We also address some basic principles of flow measurement along with some pros and cons for different measurement technologies

    Agricultural Irrigated Land and Irrigation Water Use in Utah

    Get PDF
    Utah is considered the second driest state in the United States. As a result, much of the agriculture and horticulture in Utah depends upon irrigation. Irrigation is an important feature of agriculture in Utah. The distribution of irrigated and water use varies across the state, based on water availability, topography, and soils. In recent years, sprinkler irrigation has overtaken surface methods as the dominant irrigation method, based on irrigated area, in Utah. About 75% to 80% of water withdrawals in Utah are for irrigation, with about 68% of that water being consumptive use. Alfalfa, other hay crops, and pasture are grown on about 80% of irrigated agricultural lands in Utah

    Understanding Irrigation Water Optimization

    Get PDF
    Irrigation is applied to much of the cropped area of Utah to support crop production. Limited water resources and competing demand for those resources make irrigation water conservation, irrigation water optimization, and efficient use of irrigation water important components of overall water resource management. It is well known in Utah that optimal irrigation use is even more critical during drought conditions. However, optimization practices change the quantity, quality, and timing of water flows. It is important to consider the possible hydrologic impact of irrigation practice changes and the desired outcome of an optimization practice to avoid implementing a practice that has little appreciable effect relative to the desired outcome

    Water Recommendations for Vegetables

    Get PDF
    Traditionally, we irrigate using overhead sprinklers and/or flood irrigation. However, these methods can be wasteful, and so a way to conserve and still have a healthy garden is to use drip irrigation. It can reduce water use by up to about 50%. This fact sheet reviews water recommendations for growing vegetables

    Irrigation Water Loss and Recovery in Utah

    Get PDF
    When deciding which irrigation systems to adopt, permit, or promote, it is important to consider how their efficiency and losses affect the water balance of Utah’s watersheds and drainage basins. Irrigators have no control over precipitation and only limited control of surface waters entering and leaving the state, as most of those are controlled by legal agreements. However, Utah’s water managers, elected officials, and water users can consider how surface water flows and groundwater storage is affected by using more efficient irrigation systems. Sprinkler, surface, or drip irrigation systems each have trade-offs in irrigation application efficiency, cost, and other factors. To make comparisons between systems, this fact sheet will define irrigation application efficiency, describe the destinations of irrigation water losses, and discuss how the fraction of recoverable water losses differ for various irrigation delivery systems and what that means for the overall water balance in Utah

    Evaluation of a hybrid remote sensing evapotranspiration model for variable rate irrigation management

    Get PDF
    Accurate generation of spatial irrigation prescriptions is essential for implementation and evaluation of variable rate irrigation (VRI) technology. A hybrid remote sensing evapotranspiration (ET) model was evaluated for use in developing irrigation prescriptions for a VRI center pivot. The model is a combination of a two-source energy balance model and a reflectance based crop coefficient water balance model. Spatial ET and soil water depletion were modeled for a 10 km2 area consisting of rainfed and irrigated maize fields in eastern Nebraska for 2013. Multispectral images from Landsat 8 Operational Land Imager and Thermal Infrared Sensor were used as model input. Modeled net radiation and soil heat fluxes compared well with measurements from eddy covariance systems located within three fields in the study area. Modeled sensible heat flux did not compare well. Latent heat flux compared well for the only mid-summer image, but poorly for the one spring and two fall images. The water balance ET compared well with the two-source energy balance ET for irrigated maize, but not for dryland maize. Image frequency is thought to be a contributing factor in the poor performance of the water balance. In 2015 the hybrid model will be used to generate irrigation prescription maps for a VRI system located in the study area based on modeled soil moisture depletion. Future research will focus on model parameterization and utilize aerial imagery and satellite imagery from other sensors for improved image frequency. Note: this is a revision of the original paper correcting erroneous data where one of the flux sites was mistakenly analyzed as soybeans, when it was actually maize. Mean biased error signs have also been corrected

    County-Level View of Irrigation Trends in Utah and the West

    Get PDF
    We explored water use management and trends in irrigated agriculture in the U.S. West using operator-level USDA-NASS Farm and Ranch Irrigation Survey (FRIS)/Irrigation and Water Management Survey (IWMS) data aggregated for the first time to the county instead of state scale. Our hope is that this study will guide water managers in developing regional conservation programs, inform extension and research initiatives related to irrigation, promote grower-informed water conservation education, and provide researchers with key information regarding if, how, and why growers consider water conservation in irrigation decision-making

    Evaluation of variable rate irrigation using a remote-sensing-based model

    Get PDF
    Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based on a remote sensing model (VRI-RS); VRI based on neutron probe soil water content measurement (VRINP); uniform irrigation based on neutron probe measurement; and rainfed. Only the VRI-RS and uniform treatments were applied at Brule. Landsat 7 and 8 imagery were used for model input. In 2015, the remote sensing model included reflectance-based crop coefficients for ET estimation in the water balance. In 2016, a hybrid component of the model was activated, which included energy-balance-modeled ET as an input. Both 2015 and 2016 had above-average precipitation at Mead; subsequently, irrigation amounts were relatively low. Seasonal irrigation was greatest for the VRI-RS treatment in all cases because of drift in the water balance model. This was likely caused by excessive soil evaporation estimates. Irrigation application for the VRI-NP at Mead was about 0 mm, 6 mm, and –12 mm less in separate analyses than for the uniform treatment. Irrigation for the VRIRS was about 40 mm, 50 mm, and –98 mm greater in separate analyses than the uniform at Mead and about 18mm greater at Brule. For maize at Mead, treatment effects were primarily limited to hydrologic responses (e.g., ET), with differences in yield generally attributed to random error. Rainfed soybean yields were greater than VRI-RS yields, which may have been related to yield loss from lodging, perhaps due to over-irrigation. Regarding the magnitude of spatial variability in the fields, soil available water capacity generally ranked above ET, precipitation, and yield. Future research should include increased cloud-free imagery frequency, incorporation of soil water content measurements into the model, and improved wet soil evaporation and drainage estimates

    STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection.

    Get PDF
    UnlabelledSTING (stimulator of interferon [IFN] genes) initiates type I IFN responses in mammalian cells through the detection of microbial nucleic acids. The membrane-bound obligate intracellular bacterium Chlamydia trachomatis induces a STING-dependent type I IFN response in infected cells, yet the IFN-inducing ligand remains unknown. In this report, we provide evidence that Chlamydia synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite not previously identified in Gram-negative bacteria, and that this metabolite is a prominent ligand for STING-mediated activation of IFN responses during infection. We used primary mouse lung fibroblasts and HEK293T cells to compare IFN-β responses to Chlamydia infection, c-di-AMP, and other type I IFN-inducing stimuli. Chlamydia infection and c-di-AMP treatment induced type I IFN responses in cells expressing STING but not in cells expressing STING variants that cannot sense cyclic dinucleotides but still respond to cytoplasmic DNA. The failure to induce a type I IFN response to Chlamydia and c-di-AMP correlated with the inability of STING to relocalize from the endoplasmic reticulum to cytoplasmic punctate signaling complexes required for IFN activation. We conclude that Chlamydia induces STING-mediated IFN responses through the detection of c-di-AMP in the host cell cytosol and propose that c-di-AMP is the ligand predominantly responsible for inducing such a response in Chlamydia-infected cells.ImportanceThis study shows that the Gram-negative obligate pathogen Chlamydia trachomatis, a major cause of pelvic inflammatory disease and infertility, synthesizes cyclic di-AMP (c-di-AMP), a nucleic acid metabolite that thus far has been described only in Gram-positive bacteria. We further provide evidence that the host cell employs an endoplasmic reticulum (ER)-localized cytoplasmic sensor, STING (stimulator of interferon [IFN] genes), to detect c-di-AMP synthesized by Chlamydia and induce a protective IFN response. This detection occurs even though Chlamydia is confined to a membrane-bound vacuole. This raises the possibility that the ER, an organelle that innervates the entire cytoplasm, is equipped with pattern recognition receptors that can directly survey membrane-bound pathogen-containing vacuoles for leaking microbe-specific metabolites to mount type I IFN responses required to control microbial infections
    • …
    corecore